水利工程施工中土方填筑施工技术分析

韩宏雷

河南省水利第一工程局集团有限公司

DOI: 10. 12238/j pm. v5i 2. 6513

[摘 要] 土方填筑施工技术在水利工程中占据着重要的地位,直接影响着工程质量和进度。本文对土方填筑施工技术的应用原则、应用流程、注意事项等方面进行了详细分析,以期为我国水利工程施工提供参考。

[关键词] 土方填筑; 施工技术; 应用原则; 质量控制

Analysis of earthwork filling construction technology in the construction of water conservancy projects

Han Honglei

Henan Provincial Water Conservancy First Engineering Bureau Group Co., Ltd., Zhengzhou City, Henan Province, 450016

[Abstract] Earthwork filling construction technology occupies an important position in water conservancy engineering, which directly affects the quality and progress of the project. This paper makes a detailed analysis of the application principles, application processes and precautions of earthwork filling construction technology, in order to provide reference for the construction of water conservancy projects in China.

[Key words] earthwork filling; construction technology; apply principles; quality control

引言

土方填筑施工技术在水利工程中具有广泛的应用,其施工质量对整个工程的安全、稳定和运行效率具有重要意义。为了提高土方填筑施工质量,本文从应用原则、应用流程和注意事项三个方面对土方填筑施工技术进行了详细分析。

1 土方填筑施工技术的应用原则

1.1 就近取料

就近取料是土方填筑施工的重要原则之一,可以有效减少材料运输成本,降低工程造价。施工单位应在保证质量的前提下,充分利用施工现场附近的土石资源,减少材料运输距离。

1.2 挖填结合

挖填结合是指在土方填筑过程中,将挖出的土方用于填充 其他部位。这种方法可以充分利用挖出的土方,减少土方运输 和弃土场的压力,有利于环境保护。

1.3 均匀施工

均匀施工是指在土方填筑过程中,要求各工序之间相互协调,确保施工速度和质量。施工单位应合理安排施工进度,确保各工序有序进行,提高填筑质量。

2 土方填筑施工技术的应用流程

2.1 填筑前准备

在进行土方填筑工作前,充分的准备工作是确保施工顺利

进行和提高工程质量的关键步骤。以下是填筑前准备的几个重要环节:

- (1)查明施工现场地质地貌:了解施工现场的地质情况是土方填筑工作的首要任务。这包括对土壤类型、地下水位、地质结构等信息的收集和分析。通过对现场地质地貌的详细了解,可以为填筑材料的选择和填筑方式的确定提供科学依据。
- (2)测量放样:施工前对工程区域进行准确测量和放样,是保证填筑精度和工程质量的基础。测量放样工作需要专业的测量人员使用精确的测量设备进行,确保填筑区域、边界、高程等参数的准确,为后续施工提供可靠的参考。
- (3)确定填筑区域:在详细了解施工现场的地质情况和完成测量放样工作后,接下来需要确定具体的填筑区域。这包括了解填筑区域的面积、形状、高程等,根据工程设计要求和现场实际情况做出合理规划。
- (4)清理施工障碍:在确定填筑区域之后,需要对施工 区域进行彻底清理,包括移除地表植被、清理杂物、拆除不需 要的建筑物等。清理工作的彻底与否直接影响到填筑材料的铺 设效果和质量,因此必须认真执行。

2.2 施工程序

2.2.1 清除表层腐殖土

在填筑工程中,表层腐殖土的存在无疑给填筑土料的质量

第5卷◆第2期◆版本 1.0◆2024年

文章类型: 论文|刊号(ISSN): 2737-4580(P) / 2737-4599(O)

带来了巨大隐患。腐殖土层富含大量的有机质,如果不清除, 这些有机质会对填筑土料的物理和力学性质产生负面影响。因 此,为了确保填筑土料的纯净度和工程质量,施工人员必须对 填筑区域表面的腐殖土进行清除。

在进行清除表层腐殖土的工作时,施工人员需要注意以下 几个方面:

- (1)确定清除范围:根据工程需求,合理划定清除范围,确保所有影响填筑土料质量的腐殖土都能被彻底清除。
- (2) 控制清除厚度:根据实验数据和工程经验,确定合适的清除厚度。一般来说,清除厚度约为30cm,这样可以确保填筑土料的纯净度。
- (3)高效清除:采用适当的机械设备和人力,高效、快速地完成清除工作。这不仅可以提高工程进度,还能降低清除过程中的成本。
- (4) 妥善处理清除物:将清除的腐殖土进行妥善处理,避免对环境造成污染。可以将清除的腐殖土运输到专门的处理场地,进行生态恢复、土壤改良等处理。

清除表层腐殖土不仅可以保证填筑土料的质量和工程安全,还可以提高工程效益。通过对腐殖土的清除,施工人员可以获得更纯净的填筑土料,从而提高填筑体的密实度和稳定性。此外,清除腐殖土还有助于减少填筑过程中的施工难题,降低施工成本。

2.2.2 原坡面压实

原坡面压实处理在土方工程中占据了至关重要的地位。其 核心目标是为了确保填筑土料能够在坡面上达到设计要求的 密实度,从而稳定地填充。在实际操作过程中,原坡面压实处 理不仅能够提高填筑土料的抗剪强度和抗侵蚀能力,而且对于 工程的长期稳定也具有积极的影响。

- (1)通过对坡面进行压实处理,可以使填筑土料在施工过程中更加紧密地排列,从而提高其抗剪强度。抗剪强度是指材料在受到剪切力作用时,能够承受的最大剪切应力。在这种情况下,原坡面压实处理有助于提高填筑土料的抗剪强度,使其在承受外部力量时更加稳定。
- (2)在自然界中,土壤侵蚀现象普遍存在,特别是在雨水冲刷、风蚀等外力作用下,土壤的侵蚀程度更为严重。通过对原坡面进行压实处理,可以增加土料之间的黏结力,使其在遭受侵蚀时具备更好的抗压性能。这样一来,工程的稳定性就能得到有效保障,从而降低维护成本。
- (3)在土方工程中,稳定性是衡量工程质量的重要指标。原坡面压实处理能够提高填筑土料的抗剪强度和抗侵蚀能力,使工程在长时间内都能保持稳定的状态。这对于防止自然灾害(如滑坡、泥石流等)的发生,保障人民群众的生命财产安全具有十分重要的意义。

2.2.3 填筑土料

在填筑工程中,土料的处理是关键环节。首先,要对清理 后的土方进行适当的处理,以满足填筑要求。处理方法包括: 土方的筛选、湿度调整、土粒级配调整等。这些处理方法旨在 提高土料的性能,确保填筑体的稳定性和强度。将处理后的土 方进行分层铺平。这个过程需要注意以下几点:

- (1) 控制填筑土料的厚度:根据设计要求,填筑土料的厚度应控制在 30cm 左右。这样的厚度可以保证填筑体的均匀性和稳定性,有利于后续的压实处理。
- (2)保证土料分布均匀:在分层铺平的过程中,应确保每层的土料分布均匀。这可以通过合理的施工方法和严格的施工控制来实现。均匀分布的土料有利于提高填筑体的整体性能,避免因土料分布不均导致的填筑体不稳定现象。
- (3)做好层间隔离:为了防止层间土料相互混合,需要在每层土料之间设置隔离层。隔离层可以采用防渗材料,以防止水分渗透和土料流失。
- (4)检查验收:在填筑过程中,应定期对填筑体进行检查和验收。检查内容包括土料的分布、厚度、压实度等。通过检查,及时发现问题并进行整改,确保填筑体的质量满足设计要求。

2.2.4 分层铺平、压实

在土方填筑工程中,分层铺平与压实是至关重要的环节。 这是因为填筑土料的密实度对于工程的承载能力和稳定性具 有直接的影响。为了确保填筑土料达到理想的密实度,施工人 员需要采用振动压路机进行压实处理。

振动压路机在填筑土料中能够形成均匀的密实结构,从而 提高土料的承载能力和稳定性。然而,在实际操作过程中,施 工人员还需要严格控制压实过程,以确保每层的密实度都能达 到设计要求。这是因为不同层次的土料密实度对于整个工程的 安全性和稳定性具有很大的影响。

- (1)需要根据工程设计要求,将填筑土料进行分层。一般情况下,分层厚度会根据土料的特性和工程需求进行调整。分层的目的在于让土料在压实过程中能够更好地分布应力,从而提高整体的承载能力。
- (2)采用振动压路机对每层土料进行压实。在压实过程中,应确保振动压路机的工作速度和振动频率达到适当的比例,以形成均匀的密实结构。同时,还需要密切关注压实过程中的土料变形情况,以便及时调整压实参数,确保密实度达到设计要求。
- (3) 在每层土料压实完成后,进行下一层的铺平与压实。 如此循环往复,直至整个填筑工程完成。在这个过程中,严格 控制分层铺平与压实的质量,是确保整个工程安全、稳定和耐 用的关键。
- 总之,分层铺平与压实是土方填筑工程中的核心环节。通过采用振动压路机进行压实处理,并在过程中严格控制土料的密实度,施工人员可以确保填筑工程的承载能力和稳定性达到设计要求。在此基础上,施工人员还应加强对填筑工程的监测与维护,以延长其使用寿命和保障工程安全。
 - 2.3 填筑质量检查和验收

文章类型: 论文|刊号(ISSN): 2737-4580(P) / 2737-4599(O)

水利土方填筑工程是水利项目中非常重要的一个环节,其质量的好坏直接影响到工程的安全、稳定和效益。为了确保水利土方填筑工程的质量,施工人员需要在施工过程中加强质量检查,并在填筑完成后进行严格的验收。只有通过验收,确认工程质量合格后,方可进入下一道工序。

在水利土方填筑施工过程中,质量检查是保证工程质量的 关键。监理单位和施工单位应共同负责质量检查工作,严格按 照设计要求和施工规范进行全过程监控。质量检查主要包括以 下几个方面:

- (1) 材料质量: 检查土料、石料等原材料的质量,确保使用的材料符合设计要求和规范。
- (2) 工艺质量:检查施工工艺是否符合设计要求,如填筑层的厚度、压实度等。
- (3) 设备质量:检查施工设备的性能和状态,确保设备正常运行。
- (4) 安全质量:检查施工现场的安全状况,预防安全事故的发生。

填筑完成后,应进行严格的验收工作。验收主要包括以下 几个步骤:

- (1) 资料审核: 审核施工单位的施工记录、质量检测报告等资料,确认工程质量符合设计要求。
- (2) 现场查验:对工程现场进行实地查验,检查工程质量是否达到设计标准。
- (3) 抽样检测:对工程质量进行抽样检测,确保工程质量的稳定性。
- (4)验收报告:根据验收结果,编写验收报告,明确工程质量是否合格。

3 水利土方填筑施工中的注意事项

3.1 土方填筑的方法与顺序

土方填筑是建筑工程中不可或缺的一个环节,其质量对于整个工程的安全和稳定性具有至关重要的影响。为了确保土方填筑的质量,施工人员应遵循"分层、分区、对称、平衡"的原则,合理地规划和实施填筑过程。

同时,合理确定填筑层厚度和压实系数也是关键。层厚度的确定要考虑土壤性质、工程荷载等因素,以确保填筑体的承载能力。压实系数是指填筑体在压实过程中的密度与最大密度之比,它直接影响到填筑体的稳定性和耐久性。因此,在施工过程中,要对压实系数进行严格控制,确保填筑质量。

3.2 施工过程中的质量控制

在建筑施工过程中,质量控制是至关重要的环节。只有严格把控施工质量,才能确保建筑物安全、耐用,满足使用者的需求。为了实现这一目标,施工过程中需要加强对质量的控制,确保各个环节都符合相关规范要求。

(1)强化人员培训:提高施工人员的质量意识和技术水平,确保他们能够按照规范要求进行操作。定期开展培训和考核,确保施工队伍具备高素质的专业技能。

- (2) 完善质量管理体系: 建立健全质量管理体系,明确各部门和人员的职责,确保各个环节的质量控制工作有序进行。
- (3) 严格执行验收制度:加强对施工过程中的验收工作,对不合格部位及时进行整改,确保施工质量达标。
- (4) 落实质量奖惩制度:对施工过程中表现优异的单位和个人给予奖励,对质量问题严重的单位和个人进行处罚,激发施工人员的工作积极性。

3.3 环境保护

在水利建设施工过程中,环境保护成为日益受到关注的一个重要议题。为了减少对周边环境的不良影响,施工人员需要从多个方面入手,采取一系列有效措施,确保施工过程中环境得到充分保护。

- (1) 合理布置施工场地。在施工区域的选择上,应尽量避免对生态环境的破坏,如避免占用农田、保护区等敏感区域。在施工场地的布置上,要充分考虑地形、地势、气候等因素,确保施工设施的稳定性和安全性,同时降低对周边环境的影响。
- (2)加强噪音、粉尘等污染物的控制。在施工过程中,噪音和粉尘污染是难以避免的。为了减少对周边环境和居民的影响,施工人员需要采用先进的施工工艺和设备,降低噪音和粉尘排放。同时,加强对施工现场的管理,确保施工过程中清洁卫生,减少环境污染。
- (3)保护植被。施工过程中,往往会破坏原有的植被,导致生态环境恶化。为了减轻这种影响,施工人员应在施工区域进行植被恢复工作,如种植适宜的树种、草种,以尽快恢复生态环境。同时,对于具有重要生态价值的区域,应采取更为严格的保护措施,确保植被得到充分保护。

4结语

综上所述, 土方填筑施工技术在水利工程中具有重要意义。通过分析应用原则、应用流程和注意事项, 有助于提高土方填筑施工质量, 确保水利工程的安全、稳定和高效运行。在实际施工过程中, 施工单位应结合工程特点, 合理运用土方填筑施工技术, 努力提高工程质量。

[参考文献]

[1]方群.水利工程施工中土方填筑施工技术探析[J].大众标准化,2023,(13):52-54.

[2]肖龙飞.水利工程施工中土方填筑施工技术研究[J].低碳世界.2023.13(08):58-60.

[3]崔文明.水利工程施工中土方填筑施工技术分析[J].石河子科技,2024,(01):70-72.

[4]李炜.水利工程施工中土方填筑施工技术探析[J].工程建设与设计,2024,(02):164-166.

[5]宋勇.水利工程施工中土方填筑施工技术研究[J].城市建设理论研究(电子版),2023,(19):89-91.