基于优化PSO-SVR算法的PM2.5浓度预测
摘要
关键词
全文:
PDF参考
曹玉洁,王广鹤.大气细颗粒物与电子烟联合暴露毒性 研究进展[J].环境与职业医学,2023,40(05): 595-600+608.
Dong M,Yang D,Kuang Y et al. PM2.5 concentration prediction using hidden semi-Markov model-based times series datamining[J]. Expert Syst Appl 36:9046 -9055.
Elbayoumi M,Azam N,Faizah N et al. Multivariate
Hu S , Liu P ,Qiao Y et al. PM2.5 concentration prediction based on WD-SA-LSTM-BP model:a case study of Nanjing city[J]. Environ Sci Pollut Res 29:70323 -70339.
Yuan XF,Huang B,Wang YL et al.Deep learning-based feature representation and its application for soft sensor modeling with variable-wise weighted SAE[J]. IEEE Trans Ind Informatics 14:3235 -3243.
王勇,闻德保,刘严萍,等.雾霾天气对 GPS 天顶对流 层延迟与可降水量影响研究[J].大地测量与地球动力学,2014, 34(02):120-123+127.
Cortes C , Vapnik V. Support-vector networks[J]. Machine Learning,1995,20(3):273-297.
彭令,牛瑞卿,吴婷. 时间序列分析与支持向量机的滑坡 位移预测[J]. 浙江大学学报(工学版),2013,47(09):1672-1679.
KENNEDY J,EBERHART R C. Particle swarm optimization[C]. International Conference on Networks,2002:1942-1948.
DOI: https://doi.org/10.12238/jpm.v6i5.8032
Refbacks
- 当前没有refback。

此作品已接受知识共享署名-非商业性使用-禁止演绎 4.0国际许可协议的许可。