基于随机森林的地基土未采样点CPT空间参数预测方法
摘要
关键词
全文:
PDF参考
田密,张帆,李丽华. 间接测量数据条件下岩土参数空间变异性定量分析方法对比研究[J]. 岩土力学,2018,39(12):4673-4680.
胡越,王宇. 静力触探识别场地土层分布的贝叶斯学习方法研究[J]. 工程地质学报,2020,28(05):966-972.
Lloret-Cabot M. Hicks M A, van den Eijnden, A P. Investigation of the reduction in uncertainty due to soil variability when conditioning a random field using Kriging. Géotechnique Letters, 2012, 2(3), 123-127.
Li Y J, Hicks M A, Vardon P J. Uncertainty reduction and sampling efficiency in slope designs using 3D conditional random fields. Computers and Geotechnics, 2016, 79, 159-172.
Cai Y M, Li J H, Li X Y, Li D Q, Zhang L M. Estimating soil resistance at unsampled locations based on limited CPT data. Bulletin of engineering geology and the environment. 2019, 78 (5), 3637-3648.
CHING J Y, PHOON K K, WU S H. Impact of statistical uncertainty on geotechnical reliability estimation[J]. Journal of Engineering Mechanics, 2016, 142(6): 04016027.
李镜培,舒翔,丁士君. 土性指标的自相关特征参数及其确定原则[J]. 同济大学学报(自然科学版),2003,(03): 287-290.
L. Breiman. Random forests. Machine Learning. 2001. 45 (1), 5-32.
Bauer E, Kohavi R. An empirical comparison of voting classification algorithms: bagging, boosting, and variants. Machine Learning. 1999, 36, 105-139.
DOI: https://doi.org/10.12238/jpm.v4i8.6169
Refbacks
- 当前没有refback。
此作品已接受知识共享署名-非商业性使用-禁止演绎 4.0国际许可协议的许可。