基于BP神经网络模型的共享雨伞需求预测探究

梅 喻, 华茹 赵, 芝怡 廖, 心海 刘, 语琳 宋

摘要


共享雨伞需求预测是一种有实际应用意义的问题,可以帮助共享雨伞服务提供商优化资源分配和提升用户体验。本研究旨在探究基于BP神经网络模型的共享雨伞需求预测方法。首先,收集了共享雨伞的历史数据,包括雨伞的借用数量、时间、地点和天气情况等。将数据集划分为训练集、验证集和测试集,用于模型训练、验证和评估。构建BP神经网络模型,并通过反向传播算法对模型进行训练和优化。最后当模型表现良好时,可将其部署到实际应用中,用于预测未来共享雨伞的需求情况。本研究为共享雨伞服务提供商提供了一种有效的需求预测方法,有助于优化运营策略和提高服务质量。

关键词


BP神经网络,共享雨伞,需求预测

全文:

PDF

参考


Zhang, C., Zhu, Y., & Wang, Y. (2017). Forecasting Shared Bicycle Demand: A Deep Learning Approach. 2017 20th International Conference on Intelligent Transportation Systems (ITSC).

Jia, L., Chen, Z., & Sun, S. (2018). Short-Term Shared Bicycle Demand Prediction Based on Deep Learning. 2018 15th International Conference on Service Systems and Service Management (ICSSSM). doi:10.1109/icsssm.2018.8461450

Zhang, W., Li, X., & Wang, W. (2019). Urban Shared Bicycle Demand Prediction: A Deep Learning Approach. IEEE Access, 7, 92543-92554.

Wang, L., Zhang, W., Xu, Y., & Zhang, B. (2020). A Hybrid Model for Short-Term Shared Bicycle Demand Prediction. 2020 IEEE Intelligent Transportation Systems Conference (ITSC).

Jiang, C., Zhang, H., & Fu, L. (2021). Urban Shared Umbrella Demand Prediction Based on Convolutional Neural Network and Long Short-Term Memory Network. IEEE Access, 9, 6490-6500.

Alsulamy, N., Lee, A., Thokala, P., & Alessa, T. (2020). What influences the implementation of shared decision making: an umbrella review. Patient education and counseling, 103(12), 2400-2407

Davidson, M. (2007). Seeking refuge under the umbrella: Inclusion, exclusion, and organizing within the category transgender. Sexuality Research & Social Policy, 4, 60-80.




DOI: https://doi.org/10.12238/jpm.v4i8.6181

Refbacks

  • 当前没有refback。


Creative Commons License
此作品已接受知识共享署名-非商业性使用-禁止演绎 4.0国际许可协议的许可。